Pharmacological activity investigation of
Sterculia coccinea

Nuzhat Mahbub, Most. Nasrin Akter, Tushar Ahmed Shishir, SM Saiful Islam and Nafisa Nawar

Abstract
Sterculia coccinea plant extract used to assess its different biological activity. Extract was made by soaking the dried plant powder in methanol. After comparing with the standard we found that Methanol extract of the sample gave the activity against all the experimented microbes of ZI (zone of inhibition) against *E. coli* and *B. subtilis*. After performing the antioxidant, thrombolytic, antidiarrheal, hypoglycemic and cytotoxic activity assay of methanol extract of sample plant we saw that it has a good biological activity that can be used as a potential traditional medicine.

Keywords: *Sterculia coccinea*, antioxidant, antimicrobial, antidiarrheal, hypoglycemic, thrombolytic activity

Introduction
The world of nature has been a vast source for therapeutics for as long as thousands of years. Plant extracts play a vital role in the primary health care of about 80-85% of the world’s total population [1]. In Bangladesh, medicinal plant plays an important role in the health care system [2]. Treated plant parts like leaves, flowers, barks and also roots are applied to treat diseases from a very long time [3]. In spite of the extensive use of medicinal plants, their safety and efficacy have not yet been fully examined and further detailed analysis is therefore necessary for evaluation and standardization of the plant formulations [4]. The reason behind the preference of medicinal plants over allopathic treatment options is that the medicines that the modern world offers at the moment are becoming resistant at a very high rate. *Sterculia coccinea* belongs to one of the largest Malvaceae genera which comprises of about 300 species [5]. It was named after Sterculius, the Roman god of privies. The name refers to the repulsive odour of the flowers of certain species. *Sterculia* species are known to be rich in alkaloids, saponins and flavonoid glycosides. This in turn showed a wide array of biological activities such as antimicrobial, antifungal, insecticidal, cytotoxic, antioxidant and anti-inflammatory activities due to the presence of the substances that are mentioned. [6] *Sterculia* species are generally made use by local African tribes and Chinese healers to treat gastrointestinal disorders. They showed effective activity in getting rid of bacterial infections that consequently cause Diarrhoea and dysentery [7].

To the extent of our knowledge, since there is no documented study of the specific plant extract of *Sterculia coccinea*, this study is designed to find out the hypoglycemic, antioxidant, anti diarrheal, antimicrobial, cytotoxic and thrombolytic activities.

Methods and Materials

Collection of plant materials
The leaf part of *Sterculia coccinea* plant was collected in May, 2017 from Chittagong hill tract. After collection, the National Herbarium Bangladesh (NHB), Mirpur, and Dhaka authenticated the plant material and provided a plant identification number, which was 47695.

Preparation of the extract
At first, the leaves part was washed with fresh water to remove the unwanted dust particles and plant scrap. After that, the cleaned leaves were dried under the sun for a day. Then the leaves were again dried for 1 hour at 30-40°C in hot air oven. By using a high capacity grinding machine, the dry and crusty leaves were ground. After that, at a normal ambient temperature...
C - pifogrel, and of plant extracts were. All the chemicals used in this study were of sources and highest concentration has given to red concentration of sample was ed for Journal of Medicinal Plants Studies Percentage of inhibition of DPHH free radical (1%) was is directly proportional to the radical scavenging activity. colored solution is produced. Then absorbance due to delocalization of the free electrons and a deep purple phenolic solution. When the solution became yellow to dark blue, it is understood th phenols were oxidized by Folin-Ciocalteu in ionic phenolic solution. When the solution became yellow to dark blue, it is understood that the oxidation has been completed. After that, this color changed mixture measured in 760 nm in UV spectrophotometer. Finally, the value of the absorbance plotted in gallic acid calibration curve and data was evaluated as gallic acid equivalents (GAE).

Total flavonoid content
Aluminum chloride was used to determine the total amount of flavonoids. Firstly, 0.5 ml of plant extract was made the final volume of 1 ml for reaction medium (MeOH/H₂O/CH₃COOH=14:5:1) which was then mixed with Aluminum chloride reagent (4 ml, 133 mg of Al Cl₂ × 6 H₂O and 400 mg of CH₃COO Na dissolved in 100 ml H₂O). After 5 minute, the absorbance was measured at 430 nm. Based on the calibration curve, total flavonoid content was calculated and it was expressed as gram equivalents.

DPHH free radical scavenging assay
The antioxidant activity of Sterculia coccinea was determined by performing DPPH free radical scavenging assay. To run this assay, different concentrations of plant extracts were mixed with 2, 2-diphenyl-1-picrylhydrazyl (DPPH) solution. In methanol or aqueous solution, free radicals were generated due to delocalization of the free electrons and a deep purple colored solution is produced. Then absorbance of different concentration solutions was measured at 517 nm in UV spectrophotometer. The decreasing value of DPHH at 517 nm is directly proportional to the radical scavenging activity. Percentage of inhibition of DPHH free radical (1%) was calculated by using the following equation:

\[
(%) \text{ of clot lysis} = \frac{(\text{released clot weighted})}{(\text{clot weight after clot disruption})} \times 100
\]

Cytotoxic activity
Brine shrimp lethality assay
In this assay, Artemia salina shrimp was used. Its offspring was hatched in replicated seawater to cultivate nauplii. Here, calculated amount of dimethyl-sulfoxide (DMSO) was added with sample and desired concentration of sample was prepared by dilution. The counted nauplii were placed in vials that contained approximately 5 mL simulated seawater with visual inspection. With the help of micropipette, various concentrations of samples were added to tubes. Here, vincristine sulfate was used as standard. The sample containing tubes were then placed in a dry place for 24 hours at room temperature. At the last, after 24 hours, the survived nauplii were counted. Percentage (%) of mortality was calculated by using the following equation:

Percentage of mortality= (Number of nauplii taken - Number of nauplii alive)/ Number of nauplii taken \times 100

50% of lethal concentration of extract concentration was calculated from the graph plotted percentage of mortality against concentration.

Thrombolytic activity
The normal blood flow to the cells and tissues can be hampered due to thrombus as it blocks the blood vessel which can lead to lack of blood and oxygen. There are some thrombolytic medications like utokinese, clopigorel, and streptokinase remove this thrombus and cells and tissues are remained in normal conditions. For this assay, fresh human blood was collected. Then, they were taken in three different pre-weighed sterile microbes and incubated for 45 minutes at 37°C. The upper fluid was entirely dispensed from all microtube lines when the clot was appeared. As a standard streptokinase was used and as a negative control distilled, water was used. 100 microliter of plant extract was taken in each tube and incubated for 90 minutes at 37°C. Next, liquid that was released from the clot was removed and the tubes were weighted again to observe the weight difference when the clot disruption occurred.

Percentage of clot lysis was calculated by following equation:

\[
(\%) \text{ of clot lysis} = \frac{(\text{released clot weighted})}{(\text{clot weight after clot disruption})} \times 100
\]

Antimicrobial assay
Disc diffusion assay method
In recent years, different studies are developing as antimicrobial agents to fight antibiotics resistance from different sources and highest concentration has given to screen and evaluate the antimicrobial activity. By using disc diffusion assay method, antimicrobial activity of Sterculia coccinea was evaluated. E. coli bacteria (gram negative) and Bacillus Subtilis bacteria (gram positive) were used in this study. Mular Hinton agar (MHA) was used as media in this assay. Firstly, every petri dish was autoclaved for sterilization and 20 ml of MHA was poured in every petri dish. After that, the plates were kept for a time being to be settled. With the help of cotton swab, the nutrient broth of bacterial strains was

(22.25±C) around 900 g of ground powder was soaked in 2.5 L of methanol for a period of 2 days with occasional stirring. With the help of cotton filter (pore size: 110nm) filtration was done and rotary evaporator was used at 100 rpm at 30°C to evaporate the maximum amount of solvent. For vaporizing the solvent completely from the extract, the leaf extract was kept under laminar airflow cabinet. Moreover, it was used to avoid any possibility of microbial growth in the extract while drying. Finally, 22.4 g of plant leaf extract was obtained and kept in dry and cool place and proper labeling was done. After that, this extract was used to conduct antioxidant, brine shrimp lethality assay, thrombolytic, antidiabetic, antimicrobial and hypoglycemic studies.

Chemicals
The chemicals were gallic acid [Sigma-Aldrich, USA], sodium chloride [Sigma-Aldrich, USA], Folin-Ciocalteu reagent [Sigma-Aldrich, USA], vincristine sulphate [Sigma-Aldrich, USA], 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) [Sigma-Aldrich, USA],, sodium carbonate [Merck, India] and ascorbic acid (ASA) [Merck, India], dimethyl sulfoxide (DMSO) [Fisher Scientific, UK], Castor oil (WELL’s Heath Care, Spain), 0.9% sodium chloride solution (normal saline) (Orion Infusions Ltd., Bangladesh), charcoal meal (10% activated charcoal in 5% gum acacia), and lope amide (Square Pharmaceuticals Ltd., Bangladesh) were used for anti diarrheal activity test, and dimethyl sulfoxide (DMSO) (Sigma-Aldrich, USA) and sodium chloride (Sigma) were used for cytotoxic activity test. All the chemicals used in this study were of analytical grade.
incubated in MHA. Small disc of filter paper was made by using paper punch machine and then different concentrations of plant extract (200 mg/mL and 400 mg/mL) were used to swallow that filter paper. When the discs become dry, they were transferred to the petri dishes and kept in incubator for 24 hours at 37°C. After 24 hours the zone of inhibition were calculated and for keeping the contamination limited, whole experiment was done under laminar flow.

Hypoglycemia activity
The anti-diabetic activity of the plant leaves was evaluated with glucose tolerance test. The test was done in two different ways like orally and intraperitoneally.

Oral glucose tolerance test
In Oral glucose tolerance test, 24 healthy mice were fasted for 18 hrs. Then they were divided into four groups that contained six mice in each group. Here, 0.9% (w/v) normal saline was given to group I. Group II was received Glibenclamide (250 mg/kg). In addition, group IV and V was received methanol plant extract of 200 mg/kg and 400 mg/kg respectively. After 30 minutes, glucose (3g/kg) was fed. After that at 0, 30, 90, and 120 minutes of glucose administration blood sample were taken and glucose level was estimated by glucose oxidase-peroxidase method.

Intraperitoneal glucose tolerance test
Initially 24 mice were fasted for 18 hours and then they were divided into four groups that contain six rats each. The group of negative control received only 0.9percent (w/v) normal saline and standard group received Glibenclamide (250 mg/kg) while the samples were administered the plant extract (200 mg/kg and 400 mg/kg respectively). After 30 minutes, glucose solution (3g/kg) was injected intraperitoneally. At different time after giving glucose solution like t=0, t=30 minutes, t=90 minutes and t=120 minutes, blood sampling was taken and glucose level was determined by using glucose oxidase peroxidase method.

Antidiarrheal activity
Two different tests were conducted to evaluate the antidiarrheal activity of the experimented plant.

Castor oil-induced diarrhea in rats
Normal healthy 24 rats were fasted for 18 hours. The rates were divided into 4 groups (n=6). Group I was given normal saline (0.9% w/v) orally and Group II received Lope amide (5 mg/kg) as standard group. Groups III-IV received plant extract (200 and 400 mg/kg b. wt, respectively). After 1 hour, all groups received castor oil 1 mL each orally. Next, all the rats were placed in cages with adsorbent papers and observed for 4 hours for the presence of characteristic diarrheal droppings. 100% was considered as the total number of feces of control group and % of inhibition was calculated.

Magnesium sulfate induced diarrhea
In the similar protocol as for castor oil induced diarrhea was followed for magnesium sulfate induced diarrhea. Initially, 24 healthy rats were fasted for 18 hours. The rats were divided into four groups that contained 6 rats each group. Normal saline (0.9% w/v) was given to group I. Lope amide (5 mg/kg) was given to group II and methanol plant extract (200 mg/kg and 400 mg/kg) was given to group III and IV respectively. After 60 minutes, 1 mL of magnesium sulfate solution was administrated orally and placed in cages lined with adsorbent papers and observed for 4 hours to see the presence of characteristic diarrheal dropping. 100% was considered as total number of feces of control group and % of inhibition was calculated.

Result and Discussion

Antioxidant activity

Total phenolic content (TPC)
In total phenolic content test, Gallic acid was used ad standard and methanol extract of leaves which was used as a sample. The absorbance of the sample plotted in Gallic acid calibration curve. The absorbance of the plant extract was found 0.575 and TPC value was 78.71 GAE/g against that absorbance which indicates that the plant has antioxidant activity.

Total flavonoid content
The content of total flavonoid of the plant extracts was measured spectrophotometrically by using the aluminium chloride colorimetric assay. The flavonoid content of the extracts was expressed as mg quercetin equivalent per gram of the extract and it is 282.90 QE/g against the absorbance of 0.291 that indicates the present of flavonoid content.

DPPH free radical scavenging assay
It is known that DPPH free radical scavenging activity is increasing along with increasing concentration of the methanol extract. As the reference standard, ascorbic acid was used in this experiment for which IC₅₀ value was 65.688 µg/ml. on the other hand, the IC₅₀ value of the methanol extract of the sample plant was 311.82 µg/ml. this result indicates the presence of antioxidant activity which is less significant.

Table 1: Evaluation of DPPH free radical scavenging activity of methanol extract of Sterculia coccinea.

<table>
<thead>
<tr>
<th>Test Type</th>
<th>R² value</th>
<th>IC₅₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>0.6277</td>
<td>65.688</td>
</tr>
<tr>
<td>Sample (methanol extract)</td>
<td>0.4975</td>
<td>311.82</td>
</tr>
</tbody>
</table>

Cytotoxic activity

This brine shrimp lethality assay was used to assess the cytotoxic property of methanol extract of plant material. Here, different concentrations standard and sample were plotted that provided different percentages of mortality. Percentage of
mortality was found to increase along with the increasing concentrations of standard and methanol extract. This study indicates the methanol extract of plant material has cytotoxic activity.

Thrombolytic activity

Here, W1 = Micro-tube weight, W2 = Clot with micro-tube weight, W3 = Clot with micro-tube weight after clot disruption, W4 = Clot weight, W5 = Tube weight after clot disruption, W6 = Clot with micro-tube weight.

Plasminogen enzyme is usually activated by thrombolytic agents and it also removes fibrin bonds in blood, as a result, the clot becomes soluble and blood flow is restored. Here, methanol extract showed much lower level of thrombolytic activity than standard. Standard gave 15.90% clot lysis, but distill water was used as a negative control, which provided 23% clot lysis and methanol extract of plant leaves showed 75.46% clot lysis. After comparing the clots lysis value of plant extract with the positive control value, it was observed that plant material revealed thrombolytic activity but less than standard.

Antimicrobial assay

The plant extract showed antimicrobial activity at all concentrations tested with a broad spectrum of activity, inhibiting against the growth of both Gram positive and Gram-negative bacteria. The antimicrobial potential was especially shown against *E. coli* and *B. subtilis*, when exposed to 400 mg/mL of methanol extract of plant and made it impossible when exposed to 200 mg/mL of methanol extract of dried leaves as shown in the table. These results indicate that the antimicrobial activity of the plant extract is not as significant as standard.

Hypoglycemia activity

The plant extract showed antidiarrheal activity and made it impossible when exposed to the methanol extract of dried leaves as shown in the table. These results indicate that the antidiarrheal activity of the plant extract is not as significant as standard.

Antidiarrheal activity

From the Table 3 and 4 we can say that our sample plant has the ability to act as a potential hypoglycemic medicine. Here MEPG denotes methanol extract of *Persicaria glabra*. In both the cases which means in oral and intraperitoneal we saw that the administered glucose level go low as the time increases. If we compare them the intraperitoneal administration of glucose got a high blood glucose level at a short time and it went to low level at a short period of time.

<table>
<thead>
<tr>
<th>Group</th>
<th>Dose (mg/kg)</th>
<th>Intra peritoneal glucose tolerance test (IPGTT)</th>
</tr>
</thead>
</table>
| Standd | ~ | 20.333±1.825631
| Control | 21.366±1.125683 | 15.41666±1.25683 | 10.083±1.25683 | 5.8±1.25683 | |
| MEPG200 | 200 | 22.±1.750333 | 14.66666±1.750333 | 10.466±1.750333 | 4.25±1.750333 |
| MEPG400 | 400 | 22.366±1.26329 | 16.15±1.26329 | 7.716±1.26329 | 4.5±1.26329 |

From the Table 3 and 4 we can say that our sample plant has the ability to act as a potential hypoglycemic medicine. Here MEPG denotes methanol extract of *Persicaria glabra*. In both the cases which means in oral and intraperitoneal we saw that the administered glucose level go low as the time increases. If we compare them the intraperitoneal administration of glucose got a high blood glucose level at a short time and it went to low level at a short period of time.

Table 6: anti-diarrheal activity (Castor oil induced diarrhea and Mg SO4 induced diarrhea) methanol extract of the leaves of Sterculia coccinea

<table>
<thead>
<tr>
<th>Group</th>
<th>Dose (mg/kg)</th>
<th>Castor oil induced diarrhea</th>
<th>MgSO4 induced diarrhea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>~</td>
<td>21.3333±3.5023801</td>
<td>20.8333±1.7224014</td>
</tr>
<tr>
<td>Standard</td>
<td>8.3333±1.848479</td>
<td>58.59</td>
<td>11±1.412136</td>
</tr>
<tr>
<td>MEPG200</td>
<td>200</td>
<td>15.3333±2.9439203</td>
<td>28.13</td>
</tr>
<tr>
<td>MEPG400</td>
<td>400</td>
<td>7.3333±1.7224014</td>
<td>65.28</td>
</tr>
</tbody>
</table>

Table 2: Evaluation and results of the thrombolytic activity.

<table>
<thead>
<tr>
<th>Name of the sample</th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
<th>W5</th>
<th>% of clot lysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant extract</td>
<td>0.742</td>
<td>1.558</td>
<td>1.079</td>
<td>0.347</td>
<td>0.372</td>
<td>75.46</td>
</tr>
<tr>
<td>Standard</td>
<td>0.795</td>
<td>1.519</td>
<td>1.272</td>
<td>0.357</td>
<td>0.05</td>
<td>15.90</td>
</tr>
<tr>
<td>Blank</td>
<td>0.795</td>
<td>1.478</td>
<td>1.163</td>
<td>0.468</td>
<td>0.115</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Inhibition zone (mm)</th>
<th>Gram (-ve) bacteria (E. coli)</th>
<th>Gram (+ve) bacteria (B. subtilis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.00</td>
<td>0.00</td>
<td>Gram (-ve) bacteria (E. coli)</td>
</tr>
<tr>
<td>Standard</td>
<td>23.657±2.082</td>
<td>19.3±1.58</td>
<td>0.00</td>
</tr>
<tr>
<td>Plant extract (200mg/mL)</td>
<td>0.00</td>
<td>0.00</td>
<td>12.333±1.17</td>
</tr>
<tr>
<td>Plant extract (400mg/mL)</td>
<td>12.333±1.17</td>
<td>24±1</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Dose (mg/kg)</th>
<th>Oral glucose tolerance test(OGTT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>~</td>
<td>5.2333±1.7700977</td>
</tr>
<tr>
<td>Control</td>
<td>~</td>
<td>5.2333±1.10033278</td>
</tr>
<tr>
<td>MEPG200</td>
<td>200</td>
<td>3.6333±1.267149</td>
</tr>
<tr>
<td>MEPG400</td>
<td>400</td>
<td>4.5666±0.6470446</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Dose (mg/kg)</th>
<th>Intraperitoneal glucose tolerance test (IPGTT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>~</td>
<td>20.333±0.825631</td>
</tr>
<tr>
<td>Control</td>
<td>~</td>
<td>21.366±1.25683</td>
</tr>
<tr>
<td>MEPG200</td>
<td>200</td>
<td>22±1.750333</td>
</tr>
<tr>
<td>MEPG400</td>
<td>400</td>
<td>22.366±1.26329</td>
</tr>
</tbody>
</table>

Table 3: Antimicrobial activity of the leaves of Sterculia coccinea.

Table 4: Oral glucose tolerance test in rats as a part of hypoglycemic activity of leaves of Sterculia coccinea.
A significant reduction in the number of defection instances was observed with all the test doses of the extract compared with the control group and standard group. There was graded reduction in intestinal fluid volume in graded MEPG extracts. MEPG (400 mg/kg) showed the reduction in the intestinal fluid volume with significant difference as compared with control group and standard group and % inhibition was 65.28% and 58.99% for castor oil induced diarrhea and magnesium sulfate induced diarrhea.

Conclusion
The plant has been brought into effective action in various traditional uses of which some have been proved clinically. Further studies can be conducted on secondary metabolites to explore more activities. This review can be helpful in promoting research that can help to develop new agents for therapeutic applications based on bioactive chemical compounds. Therefore, this plant is significantly used for the treatment and prevention of diseases.

References