

ISSN (E): 2320-3862 ISSN (P): 2394-0530 NAAS Rating: 3.53 www.plantsjournal.com JMPS 2020; 8(5): 86-90 © 2020 JMPS Received: 06-07-2020 Accepted: 12-08-2020

#### **Tohmina Afroze Bondhon**

Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka, Bangladesh

#### Rahat Al Mahamud

Professor, Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka, Bangladesh

#### Khoshnur Jannat

Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka, Bangladesh

#### **Anamul Hasan**

Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka, Bangladesh

# Rownak Jahan

Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka, Bangladesh

#### Mohammed Rahmatullah

Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka, Bangladesh

Corresponding Author:
Rahat Al Mahamud
Professor, Department of
Biotechnology & Genetic
Engineering, University of
Development Alternative,

Lalmatia, Dhaka, Bangladesh

# In silico binding studies with b-sitosterol and some of its fatty acid esters to 3C-like protease of SARS-CoV-2

Tohmina Afroze Bondhon, Rahat Al Mahamud, Khoshnur Jannat, Anamul Hasan, Rownak Jahan and Mohammed Rahmatullah

**DOI:** https://doi.org/10.22271/plants.2020.v8.i5b.1198

#### Abstract

COVID-19, a coronavirus (SARS-CoV-2) caused disease has turned into a pandemic with no therapeutics in the form of drugs or vaccines yet in sight. The objective of this study was to evaluate in molecular docking studies the binding energies of b-sitosterol (a phytosterol) and some of its fatty acid esters to the main protease of COVID-19, otherwise known as the 3C-like protease or 3CL<sup>pro</sup>, (PDB ID: 6LU7) in an attempt to discover possible lead compounds or drugs against the virus as a means to contain the pandemic. Molecular docking (blind) was done with the help of Autodock Vina. Seven fatty acid esters of b-sitosterol (a major phytosterol) were evaluated. While b-sitosterol gave a binding energy of -7.0 kcal/mol, b-sitosterol-acetate and b-sitosteryl-ferulate gave binding energies of -6.9 and -7.8 kcal/mol, respectively. The other esters gave lower binding energies. As a result, the ferulic acid ester of b-sitosterol has a greater probability of being a COVID-19 therapeutic.

Keywords: Molecular docking, b-sitosterol, COVID-19, pandemic, fatty acid esters

# Introduction

The ongoing pandemic [1] caused by a coronavirus SARS-CoV-2 has already as of September 14, 2020 resulted in 29,180,055 cases of infection and 928,212 deaths throughout the world. The disease first was recognized at a seafood market in Wuhan, China in the latter part of December 2019 [2]. The Director General of the World Health Organization (WHO) declared the outbreak on January 20, 2020 as a "public health emergency of international concern" (PHEIC). On February 11, 2020 WHO announced the designation of the current coronavirus disease as COVID-19. Altogether seven coronaviruses have been found affecting humans including the present virus or SARS-CoV-2 and all of them are zoonotic, that is they originally were transmitted from animals to human prior to human to human transmissions. Prior to SARS-CoV-2, six CoVs were known to infect humans including HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1, SARS-CoV, and MERS-CoV. Though SARS-CoV (Severe Acute Respiratory Syndrome coronavirus, emerged in 2002) and MERS-CoV (Middle East Respiratory Syndrome corona virus, emerged in 2012) have resulted in outbreaks with high mortality, others remain associated with mild upper respiratory tract illnesses only [3]. The name severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was named by the International Committee on Taxonomy of Viruses (ICTV).

Despite the increasing number of fatalities and infections caused by SARS-CoV-2 and the severe economic disruptions caused by this virus throughout the world, and despite frantic efforts by scientists to have a safe vaccine or drug against this virus, no such discoveries have been made till now. A number of drug targets in the virus have been identified, of whom the most promising target has been mentioned as the chymotrypsin like protease (or main protease M<sup>pro</sup>) or 3C-like protease for which the crystal structure is known <sup>[4]</sup>. This is a conserved protease with 96.1% similarity with the main protease of SARS-CoV. Inhibition of this homodimeric cysteine protease can inhibit replication of the virus through stoppage of cleavage of viral polyproteins into individual polypeptides necessary for replication and transcription <sup>[5-9]</sup>.

Journal of Medicinal Plants Studies <a href="http://www.plantsjournal.com">http://www.plantsjournal.com</a>

The catalytically active 3C-like protease is a dimer with the His41-Cys145 playing the major role in the proteolytic process <sup>[10]</sup>. Dimerization has been postulated to provide a 'substrate-binding cleft' between the two monomers <sup>[11]</sup>. However, in the dimer the His-Cys dyads are located symmetrically at opposite ends of the cleft, suggesting that they act independently <sup>[12]</sup>. Three domains are present in the main protease monomer. Domains 1 and 2 comprise of residues 8-101 and 102-184, respectively; they form a chymotrypsin-like fold responsible for catalysis <sup>[13]</sup>. Domain 3 comprises of residues 200-303. The first seven amino acids at the N-terminus reportedly form the N-finger and play a significant role in the formation of the active site of the 3C-like protease <sup>[14]</sup>.

In silico approaches like molecular docking can play an effective role in the identification of compounds, which can be therapeutics for COVID-19. A number of such approaches have been tried with natural plant-derived compounds like phytochemicals binding to 3C-like protease with some promising results, but as of yet no clinical trials or availability of drugs. What is of importance is that the phytochemicals reported to inhibit 3CL<sup>pro</sup> (betulinic acid, kaempferol, quercetin) mainly entered the regions between domains 2 and 3 <sup>[15]</sup>; this region is important for 3CL<sup>pro</sup> to form a dimer <sup>[10]</sup>. We had also been screening phytochemicals from various plant sources through *in silico* studies to evaluate their binding energies to the 3C-like protease of SARS-CoV-2 with the assumption that a strong binding can lead to inhibition of the protease with consequential inhibition of viral replication <sup>[16-20]</sup>.

b-Sitosterol is one of the most abundant phytosterols in the plant kingdom. The compound is known for having diverse pharmacological activities including anti-pyretic, antioxidant and anti-inflammatory activities [21]. The objective of the present study was to determine the binding affinity of b-sitosterol and some of its fatty acid esters to 3C-like protease of SARS-CoV-2 using molecular docking as the *in silico* tool in our search for a COVID-19 therapeutic.

# Methods

# Three-dimensional structure of COVID-19 and SARS major protease (3C-like protease)

We have used the pdb file (6LU7) of the main protease or SARS-CoV-2 3C-like protease (or main protease M<sup>pro</sup>) as published by Professor Rao and his colleagues <sup>[22]</sup>. Inhibitor (called N3) was removed from the pdb file before using the protein's structure in our molecular docking studies. Monomeric form of protein was used for molecular docking.

# Compounds used in docking studies

We have studied b-sitosterol and seven of its fatty acid esters (b-Sitosterol-acetate, b-Sitosterol-behenate, b-Sitosterol-hydrogen succinate, b-Sitosterol-isostearate, b-Sitosteryl-ferulate, b-Sitosteryl-oleate, and b-Sitosteryl-palmitate). Ligand molecules were downloaded from Pubchem [23] in sdf format. They were optimized with the force field type MMFF94 using Openbable softwares and saved as pdbqt format.

# Ligand molecular docking studies

We have conducted molecular docking (blind) using AutoDock Vina  $^{[24]}$ . We report  $\Delta G$  values as an average of values from five independent runs of the docking program. In our figures, we show the pose of phytochemicals bound to SARS-CoV-2 main protease as obtained from PyMOL and displayed in Discovery Studio  $^{[25]}$ .

## **Results and Discussion**

The structures of b-sitosterol and its seven fatty acid esters, namely, b-Sitosterol-acetate, b-Sitosterol-behenate, b-Sitosterol-hydrogen succinate, b-Sitosterol-isostearate, b-Sitosteryl-ferulate, b-Sitosteryl-oleate, and b-Sitosteryl-palmitate were obtained from PubChem. The structures of these eight compounds (b-sitosterol and its seven fatty acid esters) are shown in Figure 1 and their binding energies ( $\Delta G = kcal/mol$ ) is shown in Table 1.

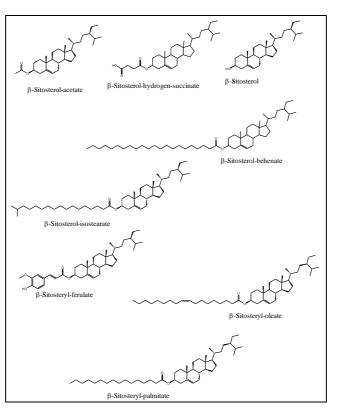



Fig 1: Structures of b-sitosterol and its fatty acid esters

Journal of Medicinal Plants Studies <a href="http://www.plantsjournal.com">http://www.plantsjournal.com</a>

Interestingly, b-sitosterol gave a binding energy of -7.0 kcal/mol; on the other hand, b-sitosterol-acetate and b-sitosteryl-ferulate gave binding energies of -6.9 and -7.8 kcal/mol, respectively. The other esters gave lower binding energies (Table 1). The lowest binding energy of -5.2 kcal/mol was observed with b-Sitosterol-behenate. It appears that the length of the carbon chain of the fatty acid in the ester

has an inverse relationship with binding energy; however, the relationship is directly not proportional indicating other factors are also present. In this regard, the other three esters with long carbon chains, namely b-Sitosterol-isostearate, b-Sitosteryl-palmitate, and b-Sitosteryl-oleate gave binding energies of -5.3, -6.0 and -6.1 kcal/mol, respectively.

| <b>Table 1:</b> Binding energies of b-sitosterol and its fat | ty acid esters to 3C-like protease |
|--------------------------------------------------------------|------------------------------------|
|--------------------------------------------------------------|------------------------------------|

|                                 | Binding energy<br>(ΔG = kcal/mol) |                                                                                |
|---------------------------------|-----------------------------------|--------------------------------------------------------------------------------|
| b-Sitosterol-acetate            | -6.9                              | Val202, His246, Ile249, Pro252, Pro293, Phe294, Val 297                        |
| b-Sitosterol-behenate           | -5.2                              | Pro108, His246, Ile249, Pro293                                                 |
| b-Sitosterol-hydrogen succinate | -6.3                              | Val202, Glu240, Ile249, Pro293, Phe294                                         |
| b-Sitosterol-isostearate        | -5.3                              | Lys102, Ile249, Pro293, Phe294, Val297                                         |
| b-Sitosterol                    | -7.0                              | Leu141, Gly143, Ser144, Pro168                                                 |
| b-Sitosteryl-ferulate           | -7.8                              | Pro108, Pro132, Val202, Glu240, His246, Ile249, Pro252, Pro293, Phe294, Val297 |
| b-Sitosteryl-oleate             | -6.1                              | Val104, Ile106, Phe294                                                         |
| b-Sitosteryl-palmitate          | -6.0                              | Val104, Asp153, Ser158, Val202, His246, Ile249                                 |

The 2-D interaction of b-Sitosterol-behenate, b-Sitosterol, and b-Sitosteryl-ferulate are shown in Figures 2-4, respectively. The interacting amino acids of the 3C-like protease and all the tested compounds are given in Table 1. It is to be noted that while interacting residues with b-Sitosterol are in domain 2, most interacting residues of b-Sitosterol-behenate and b-

Sitosteryl-ferulate are in domain 3 of the protease. However, it is possible that binding to domain 3 of the protease can bring conformational changes leading to inhibition of the enzyme. It is further to be noted that both b-Sitosterol-behenate and b-Sitosteryl-ferulate also interact with Pro108 in domain 2.

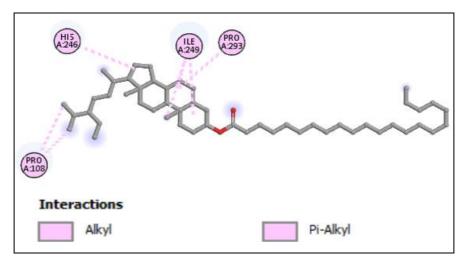



Fig 2: Interaction of b-Sitosterol-behenate with 3C-like protease of SARS-CoV-2.

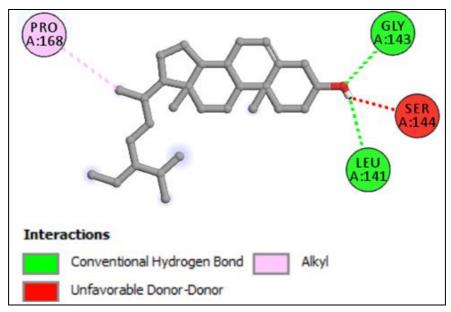



Fig 3: Interaction of b-Sitosterol with 3C-like protease of SARS-CoV-2.

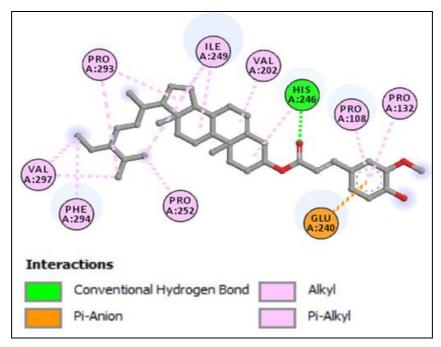



Fig 4: Interaction of b-Sitosterol-ferulate with 3C-like protease of SARS-CoV-2.

Ferulic acid and derivatives have antiviral properties. Substituted ferulic acid amide derivatives and corresponding hydrogenated ferulic acid amide derivatives reportedly showed activity against tobacco mosaic virus [26, 27]. trans-Ferulic acid derivatives containing acylhydrazone moiety also showed activity against tobacco mosaic virus [28]. Novel myricetin derivatives containing ferulic acid amide scaffolds were also found to be active against tobacco mosaic virus [29]. It appears that other compounds conjugated with ferulic acid may have antiviral activities. The present study suggests that antiviral activity of b-Sitosteryl-ferulate deserves studying as a possible therapeutic for COVID-19.

# Conclusion

Molecular docking studies indicate that b-Sitosteryl-ferulate may be a useful therapeutic for COVID-19.

## Acknowledgements

The authors themselves funded this study.

# **Conflicts of interest**

The authors declare that they have no conflicts of interest.

#### References

- 1. Rodriguez-Morales AJ, Bonilla-Aldana DK, Balbin-Ramon GJ, Rabaan AA, Sah R, Paniz-Mondolfi A *et al.* History is repeating itself: Probable zoonotic spillover as the cause of the 2019 novel Coronavirus Epidemic. Infez Med. 2020; 28(1):3-5.
- Gralinski LE, Menachery VD. Return of the Coronavirus: 2019-nCoV. Viruses. 2020; 12(2):E135. [doi: 10.3390/v12020135]
- 3. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J *et al.* China Novel Coronavirus Investigating and Research Team. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020; 10.1056/NEJMoa2001017. [doi: 10.1056/NEJMoa2001017]
- Zhavoronkov A, Aladinskiy V, Zhebrak A, Zagribeinyy B, Terentiev V, Bezrukov DS *et al.* Potential COVID-19 3C-like protease inhibitors designed using generative deep learning approaches. Preprint February 2020. Chem Rxiv. [https://doi.org/10.26434/chemrxiv.11829102.v2]

- 5. Fan K, Wei P, Feng Q, Chen S, Huang C, Ma L *et al.* Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase. J Biol Chem. 2004; 279(3):1637-1642. [doi: 10.1074/jbc.M310875200]
- 6. Thiel V, Ivanov KA, Putics Á, Hertzig T, Schelle B, Bayer S *et al.* Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol. 2003; 84(Pt 9):2305-2315. [doi: 10.1099/vir.0.19424-0]
- 7. Goetz DH, Choe Y, Hansell E, Chen YT, McDowell M, Jonsson CB *et al.* Substrate specificity profiling and identification of a new class of inhibitor for the major protease of the SARS coronavirus. Biochemistry. 2007; 46(30):8744-8752. [doi: 10.1021/bi0621415]
- 8. Adedeji AO, Sarafianos SG. Antiviral drugs specific for coronaviruses in preclinical development. Curr Opin Virol. 2014; 8:45-53. [doi: 10.1016/j.coviro.2014.06.002]
- 9. Yang H, Xie W, Xue X, Yang K, Ma J, Liang W *et al.* Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol. 2005; 3(11):e324. [doi: 10.1371/journal.pbio.0030324]
- 10. Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs. Science. 2003; 300(5626):1763-1767. [doi: 10.1126/science.1085658]
- 11. Chuck CP, Chong LT, Chen C, Chow HF, Wan DCC, Wong KB. Profiling of substrate specificity of SARS-CoV 3CLpro. PLos One. 2010; 5(10):e13197. [doi: 10.1371/journal.pone.0013197]
- 12. Shi J, Sivaraman J, Song J. Mechanism for controlling the dimer-monomer switch and coupling dimerization to the catalysis of the Severe Acute Respiratory Syndrome coronavirus 3C-like protease. J Virol. 2008; 82(9):4620-4629. [doi: 10.1128/JVI.02680-07]
- 13. Hu T, Zhang Y, Li L, Wang K, Chen S, Chen J *et al.* Two adjacent mutations on the dimer interface of SARS coronavirus 3C-like protease cause different conformational changes in crystal structure. Virology. 2009; 388(2):324-334. [doi: 10.1016/j.virol.2009.03.034]
- Tahir UL Qamar M, Alqahtani SM, Alamri MA, Chen LL. Structural basis of SARS-CoV-2 3CL<sup>pro</sup> and anti-

COVID-19 drug discovery from medicinal plants. J Pharm Anal. 2020; 10(4):313-319. [https://doi.org/10.1016/j.jpha.2020.03.009]

- Zhang DH, Wu KL, Zhang X, Deng SQ, Peng B. *In silico* screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J Integr Med. 2020; 18(2):152-158. [https://doi.org/10.1016/j.joim.202 0.02.005]
- Bondhon TA, Rana MAH, Hasan A, Jahan R, Jannat K, Rahmatullah M. Evaluation of phytochemicals of *Cassia occidentalis* L. for their binding affinities to SARS-CoV-2 3C-like protease: an *in silico* approach. Asian J Res Infect Dis. 2020; 4(4):8-14. [doi: 10.9734/AJRID/2020/v4i430152].
- 17. Jannat K, Hasan A, Mahamud RA, Jahan R, Bondhon TA, Farzana B *et al. In silico* screening of *Vigna radiata* and *Vigna mungo* phytochemicals for their binding affinity to SARS-CoV-2 (COVID-19) main protease (3CL<sup>pro</sup>). J Med Plants Stud. 2020; 8(4 Part B):89-95.
- 18. Hasan A, Mahamud RA, Jannat K, Bondhon TA, Farzana B, Fariba MH *et al.* Phytochemicals from *Solanum surattense* Burm.f. have high binding affinities for C-3 like main protease of Covid-19 (SARS-CoV-2). J Med Plants Stud. 2020; 8(4 Part A):20-26.
- 19. Hasan A, Mahamud RA, Bondhon TA, Jannat K, Farzana B, Jahan R *et al.* Molecular docking of quassinoid compounds javanicolides A-F and H with C3-like protease (or 3CL<sup>pro</sup>) of SARS and SARS-CoV-2 (COVID-19) and VP8\* domain of the outer capsid protein VP4 of rotavirus A. J Med Plants Stud. 2020; 8(4 Part A):14-19.
- Hasan A, Mahamud RA, Bondhon TA, Jannat K, Jahan R, Rahmatullah M. Can javanicins be potential inhibitors of SARS-CoV-2 C-3 like protease? An evaluation through molecular docking studies. J Nat Ayurvedic Med. 2020; 4(2):000250. [doi: 10.23880/jonam-16000250]
- 21. Sayeed MSB, Karim SMR, Sharmin T, Morshed MM. Critical analysis on characterization, systemic effect, and therapeutic potential of beta-sitosterol: A plant-derived orphan phytosterol. Medicines. 2016; 3:29. [doi: 10.3390/medicines3040029]
- 22. Liu X, Zhang B, Jin Z, Yang H, Rao Z. The crystal structure of COVID-19 main protease in complex with an inhibitor N3. https://www.rcsb.org/structure/6LU7, accessed, 2020. [https://doi.org/10.2210/PDB6LU7/PDB]
- 23. Ihlenfeldt WD. Pub Chem. In: *Applied Chemo informatics*, 2018, 245-258p. [https://doi.org/10.1002/978 3527806539.ch6e]
- 24. Trott O, Olson A. Autodock Vina: Improving the Speed and Accuracy of Docking. J Comput Chem. 2020; 31(2):455-461. [https://doi.org/10.1002/jcc.21334.AutoDock]
- 25. Studio D. Dassault Systemes BIOVIA, Discovery Studio Modelling Environment, Release 4.5. Accelrys Software Inc. 2015, 98-104.
- 26. Huang GY, Cui C, Wang ZP, Li YQ, Xiong LX, Wang LZ *et al.* Synthesis and characteristics of (hydrogenated) ferulic acid derivatives as potential antiviral agents with insecticidal activity. Chem Central J. 2013; 7:33. [http://journal.chemistrycentral.com/content/7/1/33]
- 27. Cui C, Wang ZP, Du XJ, Wang LZ, Yu SJ, Liu XH *et al.* Synthesis and antiviral activity of hydrogenated ferulic acid derivatives. J Chem. 2013; 2013: Article ID: 269434. [http://dx.doi.org/10.1155/2013/269434]

28. Wang Z, Xie D, Gan X, Zeng S, Zhang A, Yin L *et al.* Bioorg Med Chem Lett. 2017; 27(17):4096-4100. [https://doi.org/10.1016/j.bmcl.2017.07.038]

29. Tang X, Zhang C, Chen M, Xue Y, Liu T, Xue W. Synthesis and antiviral activity of novel myricetin derivatives containing ferulic acid amide scaffolds. New J Chem, 2020, 44(6). [doi: 10.1039/C9NJ05867B]