In vitro anti-lipid peroxidation and anti-Candidal potentials of different betel leaf varieties

Ravikant Shekhar, Madhusudhan MC, Sanjay CJ, Prakash HS and Geetha Nagaraja

Abstract

Betel leaf (*Piper betel* L.) is an important plant being widely consumed worldwide as well as being used in traditional medicine. The present study aims to evaluate the anti-lipid peroxidation and anti-Candida potentials of different varieties of betel leaf extracts. Three widely consumed betel leaf varieties of India (Kolkata Variety, Varanasi Variety, and Mysore Variety) were used to evaluate anti-lipid peroxidation, and anti-Candida potentials in different extracts (ethyl acetate, acetone, and methanol). Total Phenolic Content (TPC) and Total Flavonoid Content (TFC) were found to be higher in the ethyl acetate extract of all the varieties and hence selected for medicinal potential evaluation. The Mysore variety exhibited higher antioxidant and free radical scavenging properties IC50 value 179.90 ± 2.98 μg/mL and 319.52 ± 4.00 μg/mL respectively. The Varanasi variety with the IC50 value of 51.54 ± 1.81 μg/mL has slightly high anti-lipid peroxidation potentials over the Mysore variety (IC50 value 61.67 ± 2.92 μg/mL) over the standard butylated hydroxytoluene (BHT) with an IC50 value of 276.33 ± 15.20 μg/mL. The oral lotion disinfectant formulation showed anti-Candida activity in a dose-dependent fashion and the activity was higher than that of the standard drug fluconazole with the inhibition zone of 15mm over fluconazole having zone of inhibition of 12mm. The present study confirmed that the antioxidant and anti-lipid peroxidation potentials of the ethyl acetate extract of the Mysore and Varanasi variety respectively. The study also confirmed the anti-Candida activity of the ethyl acetate extract of betel leaf.

Keywords: Betel leaf, antioxidant, anti-lipid peroxidation, anti-Candida, oral disinfection formulations

Introduction

Betel Leaf (*Piper betel* L.) belonging to the family Piperaceae is a climbing vine with deep green to light green heart-shaped leaves. Although it is native to Malaysia, out of 100 total varieties found in the world, 40 varieties are cultivated only in India and 30 varieties in Bangladesh [1]. In India, the cultivation of betel leaves takes place mainly in West Bengal, Uttar Pradesh, Karnataka, Orissa, Maharashtra, Tamil Nadu, and Madhya Pradesh. Apart from India, it is cultivated in countries like Bangladesh, The Philippines Islands, Myanmar, Malaysia, and Sri Lanka. Leaves, stalk, and stems of betel leaves are consumed. Leaves of betel leaf are consumed as betel quid and as mouth fresheners because of their sweet taste with strong flavors. Around 200 - 600 million people consume betel quid worldwide [2]. In the Indian culture, the betel leaf offered along with the Areca nut is especially important and represented as an auspicious symbol on various social and religious occasions [3]. It is also used in traditional medicine for various properties as a rich source of Calcium, anti-microbial, anti-fertility, anti-diabetic, cardio-tonic, and respiratory depressant [1, 4]. It is also rich in the Phyto-compounds such as hydroxychavicol, allyl pyrocatechol, eugenol, chavicol, etc., which attribute for the various properties like anti-mutagen, anti-tumor, anti-inflammatory, anti-oxidant, radioprotectant, lymphoproliferative agent, free radical scavenger and prevents platelet aggregation [2, 4-6].

The essential oil extracted from the *P. betel* L. is known to have fungicidal effects against a wide range of fungal species including *Candida spp.*, *Aspergillus spp.*, and dermatophytes. *Candida spp.* is one of the most common fungal species present in the oral cavity being commensal and an opportunistic pathogen causing Candidiasis when the host immune system weakens [7]. These fungal pathogens are also associated with the formation of biofilms and can adversely affect the medical implants by forming a layer of biofilms on the surface of implants.

Journal of Medicinal Plants Studies

www.PlantsJournal.com

ISSN (E): 2394-8530
ISSN (P): 2320-4458
www.plantsjournal.com

JMPS 2022; 10(4): 140-149
© 2022 JMPS
Received: 26-05-2022
Accepted: 29-06-2022

Ravikant Shekhar
Nanobiotech Laboratory,
Department of Studies in
Biotechnology, University of
Mysore, Mysuru, Karnataka,
India

Madhusudhan MC
Nanobiotech Laboratory,
Department of Studies in
Biotechnology, University of
Mysore, Mysuru, Karnataka,
India

Sanjay CJ
Department of Oral Medicine &
Radiology, JSS Dental College
Hospital, JSS Academy of
Higher Education & Research,
Mysuru, Karnataka, India

Prakash HS
Nanobiotech Laboratory,
Department of Studies in
Biotechnology, University of
Mysore, Mysuru, Karnataka,
India

Geetha Nagaraja
Nanobiotech Laboratory,
Department of Studies in
Biotechnology, University of
Mysore, Mysuru, Karnataka,
India

Corresponding Author:
Geetha Nagaraja
Nanobiotech Laboratory,
Department of Studies in
Biotechnology, University of
Mysore, Mysuru, Karnataka,
India

DOI: https://doi.org/10.22271/plants.2022.v10.i4b.1446
causing complete failure of the devices as well as lipid peroxidation is a process of oxidative damage of the lipid especially the polyunsaturated fatty acids at carbon-carbon double bond(s). The process involves the removal of hydrogen and the addition of oxygen, resulting in the formation of Lipid peroxyl radical (LPR) and hydroperoxides. A high level of free radicals or ROS in cells can also directly lead to lipid peroxidation. In response to the lipid peroxidation, at a low rate, cells stimulate the defense signaling involving the activation and upregulation of antioxidants resulting in adaptive stress response, while at a higher rate, cells undergo apoptosis or necrosis and eventually damage the cell and accelerate aging. Many diseases like cancer, acute lung injury, diabetes, Alzheimer’s disease, and Parkinson’s disease are associated with lipid peroxidation. The current study focuses on the in vitro anti-lipid peroxidation potentials and anti-\textit{Candida} properties for the oral disinfection formulations of three selected varieties of \textit{Piper betel} L. namely Mysuru Chigurele (Mysuru Variety), Banarsi Paan (Varanasi Variety), and Kolkata Paan (Kolkata Variety) extracts in different solvents namely ethyl acetate, acetone, and methanol.

Materials and Methods

Chemicals and Reagents

Folin-Ciocalteu’s Reagent, Sodium Carbonate, Ferric Chloride, Ferrous Sulphate, and Acetic Acid were bought from Fisher Scientific. Gallic Acid, Potassium Acetate, Potassium Persulfate, Sodium Dodecyl Sulfate (SDS), and Thio-barbituric acid were bought from Himedia. Quercetin, Tri-chloroacetic Acid, 2, 2-diphenyl-1-picrylhydrazyl, 2, 2 - Azo-Bis (3-Ethyl Benzothiazoline-6-Sulfonic Acid), and Methanol was bought from CDH chemicals. Butylated Hydroxylalkane (BHT) Potassium ferrocyanide was acquired from Rankem chemicals. Potato Dextrose Agar (PDA) media was prepared using 100g of potato infusion, 20g of dextrose (Himedia), and 15g of agar (Himedia) in 1000mL of distilled water. The reaction mixture was incubated for one hour at room temperature and absorbance was measured at 415nm. Quercetin was used as standard and the concentration was expressed as quercetin equivalent (QE) (µg/100g of dry mass).

Total flavonoid content (TFC) estimation

The total flavonoid content was determined by the aluminum chloride method. Briefly, 250µl of 1:1000 diluted sample was mixed with 750µl of methanol, 50µl aluminum chloride (10%), 50µl potassium acetate (1M), and 1.4mL of distilled water. The reaction mixture was incubated for one hour at room temperature and absorbance was measured at 415nm.

Antioxidant assay

Reducing power assay

The reducing power assay was carried out according to the protocol described by Shen et al., with modification. The crude plant extracts were dissolved in methanol (1mg/mL). Different concentration of methanolic samples (10 to 100µg/mL) was prepared in 500 µl of distilled water. 1.25mL of phosphate buffer (20mM, pH 7.4) and 1.25 mL of potassium ferrocyanide (10%) were added and incubated for 20 minutes at 50°C. After cooling, 1.25mL of trichloroacetic acid (10%) was added to stop the reaction. The reaction mixture was centrifuged at 3000 rpm for 10 minutes. 1.2mL of the upper layer was mixed with 1.25mL of distilled water and 250µl of ferric chloride solution (0.1%). Absorbance was measured at 700nm. Ascorbic acid was used as an standard for the assay.

2, 2 – Diphenyl-1-Picryl Hydrazyl Hydrate (DPPH) Assay

DPPH free radical scavenging property was assessed according to the protocol described by Sultanov et al. with modifications. Different concentrations of crude extracts (25 to 500µg/mL) were prepared in 20µl of methanol. The methanolic samples were taken on a 96-well plate. To this 180µl DPPH (300µM) was added. The plate was incubated in the dark at 37°C for 30 minutes and absorbance was measured at 515nm. The half-maximal inhibitory concentration (IC\textsubscript{50}) value was calculated depicting the concentration of the sample needed to scavenge 50% of DPPH free radicals. Ascorbic acid was used as positive control while respective solvent mixed with ethanol was used as a negative control. Ascorbic acid was used as a standard for the assay.

2, 2 – Azo-Bis (3-Ethyl Benzothiazoline-6-Sulfonic Acid) (ABTS) Assay

ABTS Assay was carried out according to the protocol described by Re et al. ABTS solution was prepared by dissolving ABTS in water to a concentration of 7mM. ABTS radical cation was generated by adding 2.45mM of potassium persulfate to the ABTS stock solution. The mixture was allowed to stand in dark at room temperature for 12-16 hours before use. The ABTS solution was diluted with 95% methanol to an absorbance of 0.70 ± 0.02 at 734 nm. The sample was prepared by dissolving different concentrations of crude extract (10-100µg/mL) in methanol. Absorbance was measured by adding 1.0 mL of diluted ABTS solution to 10µl of the methanolic sample at 734nm. The IC\textsubscript{50} value was calculated depicting the concentration of the sample needed to scavenge 50% of ABTS radicals. Quercetin was used as a standard for the assay.

Thio-barbituric Acid Reactive Substance (TBARS) Assay

The extent of lipid peroxidation by crude extracts of different
Preparation of betel leaf-based oral disinfectant formulations

Fresh leaves of betel leaf (Mysuru Chigurele) were collected from the local market of Mysore (Karnataka, India) and were used for the oral disinfectant formulation study using the steam distillation method for obtaining essential oils, which is to be used as an active ingredient. Extraction and isolation of betel leaf oil were performed with 15 g of leaf according to the method described by Sharma et al. [18]. A clear yellow color essential oil was produced upon removal of water by the addition of anhydrous sodium sulfate and was used for mouth wash formulation. The extracted oil was used for the preparation of two different oral disinfection formulations i.e., liquid formulation and lotion formulation.

The liquid formulation contains 5% betel leaf essential oil extract, 0.15% sodium benzoate, benzoic acid, 1% sorbitol, and 93.5% sterile distilled water [19]. Suspension of the lotion formulation was made using 20% Arabic gum. The Arabic gum powder was added to the lukewarm water and mixed thoroughly, following that, 3% Polyethylene Glycol 400 (PEG) was used as a binder, and 5% betel leaf essential oil was added to the suspension. As a preservative, methylparaben was dissolved in a minimal amount of 70% ethanol and further, 60 mL of sterile distilled water was added to the components [20]. The components were then stirred continuously for another 15 minutes and were used for further studies.

The stability of the formulations was evaluated using the method described by Hadning et al. [20]. Organoleptic observations, pH change, homogeneity test, and adherence test were performed for the evaluation of the lotion formulation. The organoleptic examination consisted of noting the changes in shape, color, and odor for 30 days at room temperature (28 ± 2°C).

Anti-Candida Assay

The anti-Candida assay was performed using the disc diffusion method. The fungal isolate of C. albicans (MTCC no 183) was collected from the culture collection of the Department of Studies in Biotechnology, University of Mysore, Mysuru, Karnataka, India. A loopful of the slant culture was inoculated into the PDA medium and incubated for 48-72 hours at 28°C. Liquid and Lotion formulation was applied to the discs which were impregnated onto the medium and were incubated for 48 hours at 28°C, and the inhibitory zone surrounding the disc was measured [21].

Minimum inhibitory concentration (MIC) determination

The MIC of an anti-microbial agent is the lowest concentration at which the microorganisms appear to be inhibited from growing, with the higher the efficiency of the compound, the lower the concentration is required. The MIC was measured using the Clinical and Laboratory Standards Institute’s micro broth dilution method. The extract concentration was tested at 0.1–2 mg/mL. In each test tube, 0.1 mL of standardized inoculum (1–2 × 10⁸ colony-forming unit/mL) was added. For 48–72 hours, the tubes were incubated aerobically at 28°C. For each test sample, two controls were kept. The MIC was determined by comparing the diluted extract with the control tubes and determining the lowest concentration (highest dilution) at which signs of microbial growth were not detected (no turbidity) [22].

Statistical analysis

Assays were carried out in triplicates and respective results were expressed as mean ± standard deviation. Further, the IC₅₀ of different anti-oxidant assays were analyzed using the analysis of variance (ANOVA) test for the least significant difference with p < 0.0001 as a level of significance. Tukey’s method of analysis was used for the multiple comparisons at a 95% confidence interval (CI) with p < 0.0001 as a level of significance.

Results

Phytochemical analysis

TPC estimation

The total phenolic content of the selected betel leaf varieties is expressed as mg GAE/g of the dry mass of the sample. The standard curve (provided as supplementary data Supplementary Figure.1) was plotted with varying concentrations of Gallic acid. From the standard curve, ethyl acetate extract of Mysuru Chigurele showed the highest amount of total phenolics i.e., 267.72 ± 1.18 mg of GAE/g of dry mass, while the ethyl acetate extract of Kolkata Paan and Banarsi Paan showed the total phenolic content of 245.17 ± 2.75, 260.80 ± 0.45 mg of GAE/g of dry mass respectively as shown in Figure 1. Ethyl acetate was found to be the best solvent for the extraction of phenolics when compared to acetone and methanol, significantly containing (p < 0.0001) higher phenolic content.
Fig 1: Standard Curve for the Total Phenolic Content (TPC) estimation of different selected varieties of betel leaf

Fig 2: Standard Curve for the Total Flavonoid Content (TPC) estimation of different selected varieties of betel leaf

Table 1: Total Phenolic contents for Different Betel Leaf Varieties

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ethyl Acetate (mg of Phenolics per gm of Dry mass)</th>
<th>Acetone (mg of Phenolics per gm of Dry mass)</th>
<th>Methanol (mg of Phenolics per gm of Dry mass)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolkata Variety</td>
<td>167.843 ± 0.173</td>
<td>58.533 ± 2.671</td>
<td>73.990 ± 0.160</td>
</tr>
<tr>
<td>Varanasi Variety</td>
<td>171.815 ± 0.522</td>
<td>114.275 ± 2.907</td>
<td>67.488 ± 2.679</td>
</tr>
<tr>
<td>Mysore Variety</td>
<td>175.651 ± 0.981</td>
<td>131.598 ± 7.133</td>
<td>72.329 ± 0.294</td>
</tr>
</tbody>
</table>

Total Phenolics content (n=3), which is expressed as Gallic acid Equivalent (mg of Phenolics per gm of Dry mass).

Values in the table are represented as mean ± S.E (n=3)

Fig 3: Total Phenolic Content (TPC) of different selected varieties of betel leaf in different selected solvent calculated based on the standard curve. Bars represent the Standard Deviation. **** represents a significant difference between different extracts within the same variety at p < 0.0001

TFC Estimation

The total Flavonoid content of selected Betel Leaf varieties is expressed as µg QE/100 g of the dry mass of the sample. The standard curve (provided as supplementary data Supplementary Figure.2) was plotted with varying concentrations of quercetin. Total flavonoid content (TFC) of
ethyl acetate extract of Kolkata Paan, Banarsi Paan, and Mysuru Chigurele total flavonoid contents was found to be 193.98 ± 0.56, 199.249 ± 0.273 and 115.32 ± 0.39 µg QE/100 g of dry mass respectively as shown in Figure 2. The ethyl acetate extract of Banarsi Paan significantly (p < 0.0001) contains higher total flavonoid content. The other extracts i.e., acetone and methanol content had significantly (p < 0.0001) low total flavonoid content.

Table 2: Total Flavonoid content for different Betel Leaf Varieties

<table>
<thead>
<tr>
<th>Sample</th>
<th>Solvent</th>
<th>Ethyl Acetate</th>
<th>Acetone</th>
<th>Methanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolkata Paan</td>
<td>Ethyl Acetate</td>
<td>193.987 ± 0.566</td>
<td>21.632 ± 1.158</td>
<td>22.597 ± 0.158</td>
</tr>
<tr>
<td>Banarsi Paan</td>
<td>Ethyl Acetate</td>
<td>199.249 ± 0.273</td>
<td>31.767 ± 0.114</td>
<td>21.793 ± 0.097</td>
</tr>
<tr>
<td>Mysuru Chigurele</td>
<td>Ethyl Acetate</td>
<td>115.327 ± 0.394</td>
<td>63.416 ± 0.406</td>
<td>20.539 ± 0.255</td>
</tr>
</tbody>
</table>

Total Flavonoid content (n=3) expressed as Quercetin Equivalent (µg of Flavonoid per 100gm of Dry mass). Values in the table are represented as mean ± S.E (n=3)

Antioxidant Assay

Reducing power assay

From the results, it can be deduced that the reducing ability of the ethyl acetate extracts is in the order of Mysuru Chigurele > Banarasi Paan > Kolkata Paan over standard as shown in Fig 3.

DPPH Assay

DPPH free radical method is an anti-oxidant assay based on electron transfer that produces a violet solution in ethanol. The free radical remains stable at room temperature but gets reduced when an antioxidant molecule is present and gives a colorless ethanol solution. Lower the IC[50] value, shows high free radical scavenging activity [23,24]. From the results, we can highlight that the antioxidant properties of ethyl acetate extracts are in the order of Mysuru Chigurele > Banarasi Paan > Kolkata Paan. The IC[50] was found to be 179.904 ± 2.987 µg/mL, 254.593 ± 2.139 µg/mL, and 418.682 ± 4.035 µg/mL for Mysuru Chigurele, Banarsi Paan, and Kolkata Paan respectively, while the IC[50] for the Standard Ascorbic Acid is 93.608 ± 5.488 µg/mL, as shown in Figure 4. The result shows that the Mysuru Chigurele has significantly (p< 0.0001) high DPPH free radical scavenging ability over other varieties of betel leaf.
Fig 6: IC₅₀ values of the ethyl acetate extracts of different varieties of betel leaf in comparison with the standard. The value represents the mean ± SD based on triplicate, the bar represents the standard deviation, **** represents the significant difference between different varieties of betel leaf from the standard at p < 0.0001.

ABTS assay

The ability of anti-oxidant to scavenge the ABTS radical which is generated in the aqueous phase is measured using ABTS assay, as compared with standard Quercetin. The ABTS radical is generated by reacting with a strong oxidizing agent (Potassium Persulfate) with the ABTS salt. Only ethyl acetate extract was showing inhibition. The IC₅₀ was found to be 319.521 ± 4.009 µg/mL, 4152 ± 6.244 µg/mL, 4074.691 ± 8.090 µg/mL of Mysuru Chigurele, Banarsi Paan, and Kolkata Paan respectively as shown in Figure 5. The result shows that Mysuru Chigurele has significantly (p < 0.0001) high ABTS scavenging properties as compared to other varieties of betel leaf which is almost equal to the standard.

Fig 7: IC₅₀ values of the ethyl acetate extracts of different varieties of betel leaf in comparison with the standard. The value represents the mean ± SD based on triplicate, the bar represents the standard deviation, **** represents the significant difference between different varieties of betel leaf from the standard at p < 0.0001.

TBARS Assay

The ethyl acetate extracts were found to inhibit FeSO₄-induced lipid peroxidation. Mysuru Chigurele and Banarsi Paan ethyl acetate extracts were significantly (p < 0.0001) effective in inhibiting lipid peroxidation. The IC₅₀ of ethyl acetate extract was found to be 65.677 ± 2.291, 51.546 ± 1.814, and 114.335 ± 4.708 µg/mL for Mysuru Chigurele, Banarsi Paan, and Kolkata Paan respectively as shown in Figure 5. The result shows that the ethyl acetate extracts of Banarasi Paan and Mysuru Chigurele have almost similar lipid peroxidation inhibition properties.

Fig 8: IC₅₀ values of the ethyl acetate extracts of different varieties of betel leaf in comparison with the standard. The value represents the mean ± SD based on triplicate, the bar represents the standard deviation, **** represents the significant difference between different varieties of betel leaf from the standard at p < 0.0001.

~ 145 ~
Evaluation of betel leaf-based oral disinfectant formulations

According to organoleptic observations (as shown in Table 3), the concentration of Arabic gum comes within the framework of betel leaf formulation. The formulations were stored for 30 days to determine their stability properties. During storage, prepared oral liquid and lotion formulations maintain a continuous and stable balance in color, thickness, and odor, and there no major significant changes were observed. In the investigation, PEG was employed because of its properties like non-irritating, good adherence and distribution to the oral mucosa as well as it does not interfere with gas exchange and sweat production [25].

Prepared oral liquid formulation shows the soft texture, aromatic odor, and monophagic homogeneity form and after 30 days of incubation, the texture of the liquid changed to slightly rough, maintaining the same monophagic homogeneity with an aromatic odor. In lotion formulation, odor and monophagic form of homogeneity have been maintained persistently during the incubation period, and no significant changes were observed.

Based on pH observations, the pH in liquid and lotion formulations exhibit minimal variation, ranging from 4.7 to 5.1, this may be attributed because of the absence of any buffer system to synthetic formulations, resulting in modest pH change [26]. Homogeneity was one of the characteristics that determined the quality of the lotion formulation. The distribution of active components from betel leaf extracts in the lotion is influenced by homogeneity. The active components in the betel leaf extract must be diffused to provide effective anti-fungal efficacy. The homogeneity test was carried out by smearing 2 X 2 cm of lotion formulation on a glass plate. After it was touched and rubbed. The lotion homogeneity test was determined by analyzing whether the lotion had been well mixed during the mixing process. Both liquid and lotion formulations had good homogeneity, which was well maintained after the storage period with a smooth homogeneous flow. Liquid formulation shows even monophagic for without any agglomeration and any sedimentation, a characteristic feature which has been maintained over incubation period under room temperature. After the incubation period, there were no major significant changes in the consistency of the liquid formulation, whereas, a slight variation of yellow color was observed with light sedimentation of finely divided solid at the bottom.

An adhesive test was done to evaluate the adhesive power of the lotion formulation on the oral mucosa, when it is applied, to assess the strength of the lotion formulation that could be linked to the different application regions, such as oral mucosa, and their ability to coat the mucosal surface in an impenetrable way without clogging pores or interfering with mucosal physical activities [26]. The length of the glass plates sticking or shifting after being rubbed with lotion was used to calculate the adhesive power. The lotion has less adhered to the applied oral mucosal region as a result of the shift, and it was smeared off. Lotion formulation showed complete stable and static stickiness with 2mm movement in one minute after 30 days of storage. The longer the storage period lasted, the faster the adhesion time would decrease. The stickiness profile of the lotion was taken every five days for 30 days in stored settings and it maintained the same tendency throughout.

Table 3: Organoleptic observations of synthesized oral disinfectant formulations

<table>
<thead>
<tr>
<th>Organoleptic observations</th>
<th>Before incubation</th>
<th>After incubation period of 30 days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Liquid form</td>
<td>Lotion form</td>
</tr>
<tr>
<td>Color</td>
<td>White</td>
<td>White</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odor</td>
<td>Aromatic</td>
<td>Aromatic</td>
</tr>
<tr>
<td>pH</td>
<td>4.2</td>
<td>4.5</td>
</tr>
<tr>
<td>Texture</td>
<td>Soft</td>
<td>Very soft</td>
</tr>
<tr>
<td>Homogeneity</td>
<td>Monophasic form</td>
<td>Biphasic form composed of finely divided solids suspended in medium</td>
</tr>
<tr>
<td>Appearance</td>
<td>Clear dispersion</td>
<td>Gloomy</td>
</tr>
<tr>
<td>Viscosity</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Average of the adhesion test in minute</td>
<td>21</td>
<td>51</td>
</tr>
</tbody>
</table>

Anti-Candidal Activity

The anti-Candidal activity of betel leaf has been attributed to hydroxyl chavicol present in the extract. They modify the cell membrane structure, leading to the disruption of the microbial membrane structure [8, 27].

The anti-Candidal activity of betel leaf extracted oil as well as the liquid and lotion formulations were compared with fluconazole, a standard drug. The inhibitory zone magnifies in a dose-dependent manner. The largest inhibitory zone was observed in 15% betel leaf oil, with 17mm, followed by 10% betel leaf oil, with 12mm, and fluconazole, with 12 mm (as shown in Table 4). The MIC of extracted betel leaf oil was determined at different concentrations (5%, 10%, and 15%). Fluconazole, a popular antifungal standard was used. Liquid and lotion formulations exhibit anti-Candida activity with 11mm and 15mm of a zone of inhibition respectively. Fluconazole had the lowest MIC value at 60µg/mL, followed by 5% betel leaf oil. Nanayakkara et al. [28] revealed that extracts from young betel leaves have stronger anti-Candida activity than those of mature leaves. Resistant strains of C. albicans, a causative agent of oral candidiasis, have become a serious public health concern, further necessitating the development of innovative anti-fungal medicines to address the issue. These circumstances motivated researchers to look for new and effective antifungal medicines to replace the current regimens [29]. Previous research on betel leaf root and complete extract demonstrated potent anti-microbial action via secondary metabolite production [30, 31]. Hydroxychavicol, a significant phenolic component of betel leaf, has been shown to be antifungal [8]. Natural products are in high demand due to their comprehensive biological capabilities and bioactive compounds, which are effective against a wide range of disease-causing agents [32]. Studies on natural plant products such as betel and tulsi revealed that the secondary metabolites generated have potent antibacterial action [27, 33, 34].

In the current study, the oral disinfectant liquid was prepared
with the aim to be used for the oral gargling to prevent and kill the frequently occurring infections in the mouth, and lotion formulation was prepared with the aim to apply for the treatment of mouth ulcers. In the preliminary phase, it is tried to standardize the formulation and further study its anti-fungal activity in in vitro conditions. In future studies, the prepared formulation(s) will be used for the pre-clinical studies.

Table 2: Anti-Candidal activity of extracted betel leaf oil and oral disinfectant formulation

<table>
<thead>
<tr>
<th>Betel leaf oil</th>
<th>Zone of inhibition (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%</td>
<td>7</td>
</tr>
<tr>
<td>10%</td>
<td>12</td>
</tr>
<tr>
<td>15%</td>
<td>17</td>
</tr>
<tr>
<td>Oral disinfectant formulation</td>
<td>Liquid</td>
</tr>
<tr>
<td></td>
<td>Lotion</td>
</tr>
<tr>
<td>Fluconazole</td>
<td>12</td>
</tr>
</tbody>
</table>

Discussion

The higher phenolic component is directly related to the higher antioxidant and free radical scavenging properties and oxidation of the phenols also leads to the protection of the plants from harmful microbes eliciting the anti-microbial properties [35].

The result is not in synchronous with total phenolic content, the possible justification may be given as the flavonoid content significantly varies due to genetic diversity, environmental stress conditions, and agricultural practices [36, 37]. Moreover, literature also suggests that the flavonoid content may not depend on the phenolic content [38] while only some flavonoids with specific molecular structures can act as a proton donor and show radical scavenging activity [39-41].

The reducing power assay method is based on the reduction potential of the substance, which reacts with potassium ferricyanide (Fe3+) to form potassium ferrocyanide (Fe2+), which then reacts with ferric chloride forming a complex having an absorption maximum at 700nm. Higher absorbance may be attributed to higher reducing ability as well as potential antioxidant activity [42-44].

During lipid peroxidation, poly-unsaturated fatty acids present in the lipid membrane undergo oxidation resulting in the formation of malonaldehyde (MDA), which reacts with two molecules of TBA to form TBARS, a pinkish-red chromogen, read at 532 nm. The FeSO4 induced lipid peroxidation in the egg homogenate and its inhibition by bioactive extracts were evaluated by TBARS assay.

Conclusions

Betel Leaf is used extensively as ‘Paan’ in different parts of India and there is a preference for betel leaf. Mysuru Chigurele being the GI-tagged variety from Karnataka, India, has long been neglected even though it possesses high medicinal values. The study has been carried out to fill the lacuna in the availability of the literature regarding the bioactive potentials of the Mysuru Chigurele, which is exclusively grown in the Mysuru district of Karnataka, India.

The current study revealed that the Mysuru Chigurele (Mysuru Variety) has high phenolic content than the other varieties of the betel leaf i.e., Banarsi Paan (Varanasi Variety) and Kolkata Paan (Kolkata variety). It has a high anti-oxidant and free radical scavenging properties, which is the primary mechanism for the lipid peroxidation inhibition and can act as a potential target for the therapeutic applications as compared to the other popular varieties of the *Piper betel* L. and may decrease the need for the dependency on the chemically manufactured medicine, which has a majority share in the market, up to a certain extent. The findings also show that the ethyl acetate extract of *P. betel* is more effective as an anti-Candidal agent against *Candida albicans*. By promoting these traditional medicines, we can help to replace synthetic drugs to which *Candida* has developed resistance. Furthermore, applying this plant product to pre-clinical conditions for the treatment of mouth ulcers and oral disinfectants can be effectively implemented in the future, increasing the efficacy of this plant product compared to standard drugs.

Acknowledgment

The authors would like to acknowledge University Grants Commission (UGC), New Delhi, for the opportunity to carry out the present study. The authors also acknowledge the Department of Studies in Biotechnology, University of Mysore, for providing the infrastructures and basic facilities to carry out the research activity.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Funding

The authors would like to express their gratitude to University Grants Commission (UGC), New Delhi, for providing the BSR-Faculty Fellowship to H.S. Prakash and Research Fellowship to Ravisant Shekhar.

References

9. Ayala A, Muñoz MF, Argüelles S. Lipid Peroxidation:

