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Abstract 
Abiotic salinity stress affects the overall growth of plants. It is a major issue in arid regions of the world 

and semi-arid regions of the world. Physiological changes like germination percentage, root-shoot length, 

turgidity, and Relative water content were determined in 3 ragi varieties (Indaf, Hasiru gambe, and Carr 

ragi) with salinity treatments at a concentration (of 0, 50, 75, and 100 mm). Biochemical changes like 

concentration of Proline, reducing sugar, protein, and chlorophyll content were also measured in 

comparison to the control. Salinity was given as a basal dose and sampling was done after 21 days. The 

salinity treatment was started after 5 days of germination. Out of 3 varieties, Carr is found to be salt 

tolerant and Hasiru gambe ragi is found to be susceptible to salinity stress. 

 

Keywords: Salt stress, Eleusine coracana, germination percentage, Relative Water Content (RWC), 

turgidity, proline 

 

1. Introduction 
Finger millet (Eleusine coracana (L.) Gaertn.) is a allotetraploid cereal of Poaceae. Asians and 
Africans consume them in high amounts (Chivenge et al., 2015) [13]. It is an exceptional 
nutrient source with compounds like essential amino acids and ions (Gupta et al., 2017) [21]. 
Finger millet is beneficial because it is hypoglycemic, antiulceratic, and hypocholesterolemia 
(Chetan and Malleshi, 2007) [17]. Finger millet can be grown in many agronomical regions, and 
the crop also has a higher shelf life making it economically viable (Onyango, 2016) [32]. Finger 
millets are used as a raw material for producing ethanol (Tekaligne et al., 2015) [45]. 
Soil salinity leads to hyperosmotic stress, and interferes with the various biological activities 
of plant roots and root microbes (Abbas et al., 2019) [1]. Salinity provided in the form of 
irrigation water near coastal areas is said to cause irreversible damage to plant systems 
(Zuazao et al., 2004) [49]. Affected plants show an increase in Caspase, ROS, Hydrogen and 
lipid peroxidase (Striker et al., 2015) [44]. 
The decline in osmotic potential caused due to soil salinity can endorse the difficult 
translocation of nutrients. Salinity mainly shows two physiological effects on the affected 
plants i) Rate of emerging leaves decline and ii) Toxic symptoms (chlorosis and necrosis) on 
mature leaves (Rahaman et al., 2014) [35].  
Plant development depends on seed germination (Tlig et al., 2008) [46]. Premature stages of 
finger millets are susceptible to stress like salinity and drought (Hema et al., 2014) [22]. In 
comparison to other cereal crops viz, barley, sorghum, oats, and wheat, finger millets are found 
to be highly susceptible to salinity stress (Bray et al., 2000) [9]. 
Reports suggest that short-time salinity stress can adversely affect the germination, root-shoot 
length, relative water contents, photosynthetic pigment concentration, proteins concentration, 
proline content, and amount of reducing sugars in finger millets (Dugasa et al., 2019; Kumar 
and Khare, 2016) [17, 26]. 
Finger millet is a staple crop grown in different agronomical regions of the world. With the 
changing geographical and climatic conditions there is limited information available on 
different varieties and their tolerance capacities with regard to salinity stress. 
In the present study, three finger millet genotypes were evaluated for seedling characteristics 
like seed germination percentage, turgidity, relative water content, root length, shoot length, 
fresh weight, and dry weight. The biochemical characteristics like chlorophyll, Proline, 
Protein, and reducing sugar are also estimated. Five replicates of 100 seeds per genotype for 
each treatment were maintained. 
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Materials and Methods 

Geographical location of the experiment 

A multipot-based experiment was conducted May-August 

(2022) in the Department of Botany, Jnana Kaveri P.G. 

Centre, Kodagu, Karnataka, India. 

 

Plant Material and experimental condition 

3 finger millet genotypes viz, Hasiru gambe, Indaf, and Carr 

were collected from an agriculture shop in Hassan, Karnataka. 

Seeds were handpicked and washed and air dried. The seeds 

were sterilized with 1.5% HgCl2 and were sowed in multi pots 

with a mixture of sterilized soil, sand and organic manure in a 

ratio of 2:1:1.  

Finger millet seedlings were grown for 21 days, in laboratory 

conditions with temperature varying from 24 ºC - 18 ºC. The 

photoperiod provided was 16/8 hrs. The seedlings were 

treated with NaCl (50, 75, 100 mm) at a 3-day interval. The 

treatment was started after 5 days of seed sowing. The control 

set of seedlings was irrigated with distilled water (Mukami et 

al., 2020) [30]. 

 

2.2 Morphological parameters 

Finger millet (Eleusine coracana) of 3 different varieties viz, 

Indaf, Hasiru gambe, and Carr ragi were collected. Then Petri 

plates were prepared with the blotter technique. 3 replicates 

were kept for each variety. Salinity treatment was given in a 

concentration of 50 mm, 75 mm, and 100 mm treatment daily. 

The observation was noted after 7 days and results were 

calculated (Mukami et al., 2020) [30]. Plants were cultivated in 

control and treated conditions, and parameters length of shoot 

(SL), length of root (RL), their ratios (S/R), as well as plant 

height (SLL), were measured (Cirillo et al.,2019; Soares et 

al., 2018) [10, 14, 42]. Plants are carefully removed along with 

roots. Roots are rinsed with tap water and moisture is blotted. 

Plants were cultivated in control and treated conditions, and 

morphological parameters including shoot length (SL), root 

length (RL), and their ratios (S/R), as well as plant height 

(SLL), were measured. 

Then the electronic weighing balance was used to measure the 

fresh weights (FW) of each plant. Plants were placed on 

aluminum foil and dried for 48 hours at 80 ºC to achieve dry 

weight (DW). 

 

Physiological parameters 

Leaf Relative water content 

Leaflets are taken from 3 varieties of finger millets (n=3), 

fresh weight is recorded as W1, Leafs are soaked in deionized 

water overnight, turgid weight W2 is recorded. They are oven 

dried at 80 0C. The dry weight measured is W3 (Sairam et al., 

2002) [37]. The relative water content (RWC) is estimated as 

follows (Polash et al., 2018) [34]. 

 

RWC = W1- W3/ W2- W3 x 100. 

 

Photosynthetic pigments 

Using the Arnon (1949) [4] method, the different types 

chlorophyll contents were measured. 

 

Biochemical changes 

Proline content 

In accordance with Bates et al., (1973) [6] the fresh leaf from 

both the control and the treatment was utilized to determine 

the proline content. It was measured at 520 nm. The proline 

concentration is given as µmol/g FW. 

 

Protein content 

The acetone-trichloroacetic acid (TCA) preparation was used 

to extract the entire sample's protein (Damerval et al., 1986) 
[15]. Each treatment's 0.5 mg of leaf tissue was grinded in 10% 

TCA on ice and incubated at 40 ºC overnight. After 

centrifuging for 15 minutes, 100% acetone was used to wash 

the pellet. Based on a standard curve created using 1–10 mg 

of BSA (bovine serum albumin), the protein was calculated 

(Lowry et al., 1951) [27]. The protein concentration was given 

as mg/g FW. 

 

Reducing sugar 

Johnson et al., (1964) [24] procedure was used for estimation. 

Absorbance was measured at 520 nm. Reducing sugar was 

calculated in mg/FW and with glucose as a standard. 

 

Statistical analysis 

The results of five biological replicates (n = 5) were used to 

calculate the mean value and standard error of the 

morphological, physiological, and biochemical data. Tukey's 

multiple comparison tests were used in a two-way analysis of 

variance (ANOVA) to determine whether the salinity 

treatments significantly differed from the control treatments. 

Significant differences at p<0.05 were used to examine the 

variances between the means. Significant variations between 

three sets of control and treatment conditions are indicated by 

various alphabetical subgroups. 

 

3. Results 

3.1 Saltinity stress and seed germination 

Table 1 shows the effect of salinity on finger millet 

germination. Results indicate a decrease in germination rate 

with increased salinity. A high germination rate of 90.6±2.3% 

to 94.6±4.6% was seen in the control. The lowest germination 

rate is found in the Carr variety with 44±4%, followed by 

60±4% in Hasiru gambe and Indaf.  

 

3.2 Shoot and root length in finger millet varieties under 

salt stress. 

On observation the plants showed chlorosis (yellowish color), 

leaf scorching, delayed growth, as shown in table 2 the shoot 

length decreased with the increase in NaCl concentration. 

Particularly, the shoot height of Indaf has decreased by 

44.6%, followed by Carr by 48% and Hasiru gambe by 50.1% 

with 100 mm treatment. The same result was found in case of 

roots also (Table 3). 

 

3.3 Relative water content 

Table 4 depicts the change in RWC with respect to salinity 

treatment. The RWC of all varieties under control conditions 

were ranging from 93.54±1.92 to 81.66±1.25. Increased 

salinity reduces water potential of leaves.. Indaf variety 

showed the least reduction. 

 

3.4 Effects on Chlorophyll content 

On analyzing the chlorophyll content there is a significant 

difference among varieties with salt treatments. The NaCl 

treatment has elicited a contrary relationship between the 

salinity and the chlorophyll. The higher chlorophyll 

concentration was found in Indaf 50 mm treatment- 6.8±0.40 

mg/g FW, followed by Carr untreated with 6.4±0.4 mg/g FW. 

Under saline conditions, the chlorophyll values were reduced 

relatively in proportion to the treatment concentration. At 100 

mm concentrations the chlorophyll concentration was 

3.9±0.57 mg/g FW in Carr, 4.7±1.14 mg/g FW in Indaf and 
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4.4±0.48 mg/g FW in Hasiru gambe was found (Table 5). 

 

3.5 Effects on Proline content 

The effect on Proline production in different varieties is 

shown in Table 6. On increasing the salt concentration from 

50 mm, 75 mm to 100 mm the concentration of Proline has 

increased. The maximum increase is seen in the Hasiru gambe 

variety (411±10.8 µg/g FW), followed by Indaf (401.36±µg/g 

FW) and Carr (340.26±27.72 µg/g FW). In the untreated 

varieties, the Proline content is in a similar concentration. 

 

3.6 Effects on Reducing sugar content 

In Table 7, the effects of salinity stress on reducing sugars are 

shown. The concentration of reducing sugar is proportional to 

concentration of salinity treatment in comparison to that of 

control. Plants under control conditions have the lowest 

reducing sugar content between 1.43 mg/g FW – 1.73 mg/g 

FW. The 100 mm treatment showed the highest concentration 

ranging from 4.36 mg/g FW to 4.98 mg/g FW. 

 

3.7 Effects on Protein content 

The impact of salinity triggered the increase in protein 

concentration in the stressed plants (Table 8). The 100 mm 

salinity treatments showed a protein concentration of 

60±8.19mg/g FW in Hasiru gambe, 55±4.65 mg/g FW in 

Carr, and 57.66±2.29 mg/g FW in Indaf. 

 

4. Discussion 

According to genotype, varieties, and factors of environment, 

the response of plant varies and these are quantitatively 

inherited traits (Bertazzini et al., 2018; Shabala et al., 2013) [7, 

41]. As per to Dugassa et al., (2019) [17], short-term salinity 

stress effects germination rate, root and shoot length, and 

relative water content. To comprehend their adaptations to 

saline conditions, it is crucial to screen for salt-tolerant 

varieties. Three different varieties of finger millets were 

tested in this study, and the results revealed variations within 

the tested parameters. The Carr variety is found to be salt 

sensitive and Indaf and Hasiru gambe is found to be salt 

tolerant. These findings were from previous work on finger 

millet (Mukami et al., 2020) [30], lettuce (Ahmed et al., 2019) 
[2], alfalfa (Sandhu et al., 2017) [38], and wheat (Tounsi et al., 

2017) [47]. 

As per Soares et al., (2018) [42], shoots helps plants in 

adapting to stressful environments and survive by allocating a 

lot of resources to reduce stress. According to Carillo et al., 

(2019) [10, 14] and Hussain et al., (2015) [23].  

Our findings suggest that Hasiru gambe is more salt tolerant 

and is followed by Carr and Indaf. Previous studies show that 

under saline conditions, salt-tolerant plant varieties grow 

more rapidly and exhibit less growth retardation than sensitive 

ones (Sarabi et al., 2017) [39].  

As roots are responsible for nutrient uptake and translocation 

they play a significant role in the salt tolerance of plants. Root 

growth is also susceptible to salt stress because of their direct 

contact with saline environments (Munns and Tester, 2018) 
[31]. Relative water content is inversely proportional to salt 

stress (Polash et al. 2018) [34]. ABA-mediated stomal closure 

impacts transpiration resulting in little uptake by roots and an 

increase in cell water content (Blatt and Amstrong, 1993) [8]. 

With increasing salinity treatment concentration, the 

chlorophyll content dropped. Similar results with work on 

Heritiera fomes reported by Mitra and Banergee (2010) [29] 

provides additional support for the findings. In the study of 

salinity stress in rice plants, Rodreguez et al., (2006) [36] 

discovered a negative correlation between chlorophyll and 

salinity. Salinity stress and chlorophyll levels in bean plants 

are found to be negatively correlated, according to Stoeva and 

Kaymakanova's (2008) [43]. 

Proline accumulates in the plant under salinity condition, 

which helps the plant in adapting. Proline concentration is 

proportional to concentration of salinity treatment. The results 

are similar to the findings of Amini and Ehasanpour, (2016) 
[5] in Lycopersicum esculentum. The contents of proline 

increased with salinity concentration in gerbera as reported by 

Ganege don et al., (2010) [19]. Lokhande et al., 2011 [28] found 

an increase in free proline increasing of salinity treatment in 

Sesuvium portulacastrum. 

In order for plant cells to adjust their osmotic balance under 

salinity stress, sugar must be reduced. Sugars are crucial in 

osmotic adjustment during salt stress, as evidenced by the 

high levels of reducing sugars that have been found in plants 

with high salinity tolerance. Numerous studies have 

documented the rise in reduced sugar concentration in 

response to salinity stress (Dubey and Singh, 1999; Flowers, 

2004; Pattanagul and Thitisaksaksul, 2008) [16, 18, 33]. 

Plants exposed to NaCl stress have shown higher 

concentrations of protein production. The results obtained, 

agree with the work presented by Chao et al., (1999) [11] in 

Lycopersicon esculentum (L.) with response to salinity 

treatment. Sibole et al., (2003) [40], have reported the same 

result in Medicago sativa. Tort and Turkyilmaz (2004) [48] 

found high protein content in Hordeum vulgare L. when 

subjected to salinity stress. Kapoor and Srivatsava (2010) [25] 

have obtained similar results with Vigna mungo (L.). 

 
Table 1: Effects on the germination rate of 3-finger millets. 

 

Variety 
Germination rate (%) 

0 mm 50 mm 75 mm 100 mm 

Hasiru gambe 90.6±2.3a 77.3±6.1ns 68±4ns 60±4a 

Carr 93.3± 2.3ns 80±4ns 64±4ns 44±4ab 

Indaf 94.6±4.6a 80±4ns 72±4ns 60±4b 

 

Readings within a column are marked with superscripts, 

superscripts represent if the means are significantly different 

between the varieties or not on the basis of Tukey’s test at 

p<0.05 (Two way ANOVA). Every data is represented as 

mean± SD is the mean of 5 replicates. 

 
Table 2: Effects on the shoot length of 3-finger millets. 

 

Variety 
Shoot length (cm) 

0 mm 50 mm 75 mm 100 mm 

Hasiru gambe 4.7 ± 0.4a 3.9±0.4ns 3.3±0.4ns 2.4±0.29ns 

Carr 5.2±0.35ns 4.8±1.8ns 3.7±1.43ns 2.5±0.15ns 

Indaf 6.56±0.78a 2.9±0.8ns 3.3±0.35ns 2.9±0.61ns 

 

Readings within a column are marked with superscripts, 

superscripts represent if the means are significantly different 

between the varieties or not on the basis of Tukey’s test at 

p<0.05 (Two way ANOVA). Every data is represented as 

mean± SD is the mean of 5 replicates. 

 
Table 3: Effects of NaCl on the root length of 3-finger millets. 

 

Variety 
Root length (cm) 

0 mm 50 mm 75 mm 100 mm 

Hasiru gambe 8.4±1.4ns 6.8 ± 1ns 5.4±1.7ns 4.3± 0.6ns 

Carr 6.9±0.8ns 5.8±0.34ns 4.9±0.73ns 3.6±0.15ns 

Indaf 6.5±0.6ns 5.6±0.6ns 4.7± 1.7ns 3.2± 0.5ns 
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Readings within a column are marked with superscripts, 

superscripts represent if the means are significantly different 

between the varieties or not on the basis of Tukey’s test at p< 

0.05 (Two way ANOVA). Every data is represented as mean± 

SD is the mean of 5 replicates. 

 
Table 4: Effects on Relative Water Content of 3-finger millets. 

 

Variety Relative water content (%) 

 0 mm 50 mm 75 mm 100 mm 

Hasiru gambe 81.66±1.25ab 68.18±2.5a 51.52±2.6ac 39.6±2.7c 

Carr 89.47±1.26a 72.09±3.4 59.39±1.59ab 41.6±4.3b 

Indaf 93.54±1.92b 76.54±1.9a 69.07 ± 2.3bc 47.77±3.9bc 

 

Measurements within a column are marked with superscripts, 

superscripts represent if the means are significantly different 

between the varieties or not on the basis of Tukey’s test at p< 

0.05 (Two way ANOVA). Every data is represented as mean± 

SD is the mean of 5 replicates. 

 
Table 5: Effects on Chlorophyll content of 3-finger millets. 

 

Variety Total chlorophyll content (mg/FW) 

 0 mm 50 mm 75 mm 100 mm 

Hasiru gambe 5.5±0.86ns 4±0.73ns 5±0.32ns 3.9±0.57ns 

Carr 6.2±0.40ns 5±0.73ns 4.3±0.32ns 4.7±1.14ns 

Indaf 5.9±0.08ns 6.8±0.08ns 5.3±0.32ns 4.4±0.48ns 

 

Readings within a column are marked with superscripts, 

superscripts represent if the means are significantly different 

between the varieties or not on the basis of Tukey’s test at p< 

0.05 (Two way ANOVA). Every data is represented as mean± 

SD is the mean of 5 replicates. 

 
Table 6: Effects on Proline content of 3-finger millets. 

 

Variety Total Proline content (µg/FW) 

 0 mm 50 mm 75 mm 100 mm 

Hasiru gambe 207.5±11.16ab 322.9±17.89ac 356.1±22.13ab 411.9±10.8ac 

Carr 224.2±3.02bc 262.2±4.74bc 326.6±16.99bc 340.26±27.72 

Indaf 208.2±11.75ca 309.63±6.21ca 358.4±6.58ca 401.36±21.2ca 

 

Readings within a column are marked with superscripts, 

superscripts represent if the means are significantly different 

between the varieties or not on the basis of Tukey’s test at p< 

0.05 (Two way ANOVA). Every data is represented as mean± 

SD is the mean of 5 replicates. 

 
Table 7: Effects on Reducing sugar content of 3-finger millets. 

 

Variety 
Total reducing sugar content (mg/FW) 

0 mm 50 mm 75 mm 100 mm 

Hasiru gambe 1.73±0.32a 2.39±0.17ac 2.83±0.08a 4.36±0.36ns 

Carr 1.65±1.16b 2.45±0.17bc 3.3±0.12b 4.47±0.23ns 

Indaf 1.43±0.17ns 2.77±0.7ca 3.7±0.21c 4.98±0.09ns 

 

Readings within a column are marked with superscripts, 

superscripts represent if the means are significantly different 

between the varieties or not on the basis of Tukey’s test at p< 

0.05 (Two way ANOVA). Every data is represented as mean± 

SD is the mean of 5 replicates. 

 
Table 8: Effects onProtein content of 3-finger millets. 

 

Variety Total Protein content (mg/FW) 

 0 mm 50 mm 75 mm 100 mm 

Hasiru gambe 15.56±1.69ns 20.3±0.64ns 42.4±2.45a 60±8.19ns 

Carr 13.83±1.11ns 23.38±0.90ns 43.83±1.12b 55±4.65ns 

Indaf 20.2±1.55ns 26.83±0.92ns 45.3±2.48ns 57.66±2.29ns 

 

Readings within a column are marked with superscripts, 

superscripts represent if the means are significantly different 

between the varieties or not on the basis of Tukey’s test at p< 

0.05 (Two way ANOVA). Every data is represented as mean± 

SD is the mean of 5 replicates. 

 

 
 

A 
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Fig 1: A. Graphical representation of germination percentage, b. Graphical representation of shoot length, c. Graphical representation of root 

length, and d. Graphical representation of Relative Water Content. 
 

5. Conclusion 

In this study, the impact of NaCl stress treatments on the 

physiological characteristics of finger millet is analyzed. The 

results showed that finger millets exhibit a wide range of 

distinct salinity stress responses. It is concluded with an 

increase in salinity treatment concentration the seed 

germination, root length, shoot length, and relative water 

content decrease in the finger millets, whereas the 

biochemical parameters like, proline, protein, and reducing 

sugar concentration increase in salinity stressed plants. From 

the data of the Carr variety, we hypothesize that this variety 

has genetic resources with considerably high salinity 
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tolerance. Understanding the genes involved in the regulation 

of salt tolerance in finger millets requires additional analysis. 
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